Energetics of bacterial growth: balance of anabolic and catabolic reactions.
نویسندگان
چکیده
Biomass formation represents one of the most basic aspects of bacterial metabolism. While there is an abundance of information concerning individual reactions that result in cell duplication, there has been surprisingly little information on the bioenergetics of growth. For many years, it was assumed that biomass production (anabolism) was proportional to the amount of ATP which could be derived from energy-yielding pathways (catabolism), but later work showed that the ATP yield (YATP) was not necessarily a constant. Continuous-culture experiments indicated that bacteria utilized ATP for metabolic reactions that were not directly related to growth (maintenance functions). Mathematical derivations showed that maintenance energy appeared to be a growth rate-independent function of the cell mass and time. Later work, however, showed that maintenance energy alone could not account for all the variations in yield. Because only some of the discrepancy could be explained by the secretion of metabolites (overflow metabolism) or the diversion of catabolism to metabolic pathways which produced less ATP, it appeared that energy-excess cultures had mechanisms of spilling energy. Bacteria have the potential to spill excess ATP in futile enzyme cycles, but there has been little proof that such cycles are significant. Recent work indicated that bacteria can also use futile cycles of potassium, ammonia, and protons through the cell membrane to dissipate ATP either directly or indirectly. The utility of energy spilling in bacteria has been a curiosity. The deprivation of energy from potential competitors is at best a teleological explanation that cannot be easily supported by standard theories of natural selection. The priming of intracellular intermediates for future growth or protection of cells from potentially toxic end products (e.g., methylglyoxal) seems a more plausible explanation.
منابع مشابه
Immunological and structural relatedness of catabolic ornithine carbamoyltransferases and the anabolic enzymes of enterobacteria.
Purified catabolic ornithine carbamoyltransferase of Pseudomonas putida and anabolic ornithine carbamoyltransferase (argF product) of Escherichia coli K-12 were used to prepare antisera. The two specific antisera gave heterologous cross-reactions of various intensities with bacterial catabolic ornithine carbamoyltransferases formed by Pseudomonas and representative organisms of other bacterial ...
متن کاملMechanisms of Cancer Growth and Metastasis with Substantiation of New Methods Cancer Therapy
Stationary State of open non-equilibrium non-linear thermodynamic system of an able-bodied organism is characterized by stability of Internal Energy [the temperature 36,00C 36,90C by which all enzymes operate etc.] and Internal Medium [stable concentrations of substances in blood and neurolymph] according the first law of thermodynamics [1]. Stationary State of open thermodynamic system of an a...
متن کاملAging, osteoarthritis and transforming growth factor-β signaling in cartilage
Osteoarthritis is a common malady of the musculoskeletal system affecting the articular cartilage. The increased frequency of osteoarthritis with aging indicates the complex etiology of this disease, which includes pathophysiology and joint stability including biomechanics. The balance between anabolic morphogens and growth factors and catabolic cytokines is at the crux of the problem of osteoa...
متن کاملIL-1beta and BMPs--interactive players of cartilage matrix degradation and regeneration.
Intact human adult articular cartilage is central for the functioning of the articulating joints. This largely depends on the integrity of its extracellular matrix, given the high loading forces during movements in particular in the weight-bearing joints. Unlike the first impression of a more or less static tissue, articular cartilage shows - albeit in the adult organism a slow--tissue turnover...
متن کاملTime resolved DNA occupancy dynamics during the respiratory oscillation uncover a global reset point in the yeast growth program
The structural dynamics of chromatin have been implicated in the regulation of fundamental eukaryotic processes, such as DNA transcription, replication and repair. Although previous studies have revealed that the chromatin landscape, nucleosome remodeling and histone modification events are intimately tied into cellular energetics and redox state, few studies undertake defined time-resolved mea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiological reviews
دوره 59 1 شماره
صفحات -
تاریخ انتشار 1995